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Seasonal Adjustment by Signal Extraction
Through Wavelets·

Daniel C. Bonzo'

ABSTRACT

Seasonal adjustment is undertaken in order to excise out the short-term effects of seasonal
factors on a series. This results in an adjusted series that is more amenable to policy and
statistical analysis. This procedure is typically carried out by the use of programs such as the
US Bureau of the Census' X-II or one of its variants such as Statistics Canada's X-II
ARIMA. These methods, however, are ad hoc in nature in the sense that they fail to exhibit
optimal properties. In this technical report we are proposing an alternative procedure based
on filters defined by wavelet coefficients. Wavelets are used to extract an estimate of the
ARIMA parameters through an approximate maximum likelihood procedure. The estimate is
then used to design a filter that will extract the seasonal component out of the original series.
This filter is optimal in the sense defined by Whittle (1963).

1. INTRODUCTION TO SEASONAL ADJUSTMENT

Why seasonally adjust a series?
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The economic impetus for development, in general, and concerns about sustainable
growth require constant monitoring of socio-economic data series. Through careful
assessment and analysis of trends in such series, policy makers and advisers would be able to
formulate and adopt proper interventions that would secure long-term growth prospects for a
country's economy. However, such an analysis requires the isolation of seasonal fluctuations
in order to rid the series of the short-term effects of seasonal factors. Such a procedure is
called deseasonalization or seasonal adjustment.

General Procedure

Seasonal adjustment of a time series consists of a series of procedure that seeks the
removal of series oscillations due to seasonal factors. Removal of such variations is
important in policy formulation since it seeks to eliminate short-term changes that are usually
traced to factors such as calendar effects, institutional factors, weather or climate, among
others. It is logical to think that the removal of such fluctuations will bring about a smoothed
series that is more amenable to statistical and policyanalyses.

Seasonal adjustment was first introduced by the US Bureau of Census in 1957 under
the direction of Julius Shiskin. The general adjustment process requires the expression of any
time series {Xj} into one of two model forms: multiplicative or additive. The additive model
is given by

(I)
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where
T, = trend term;
C. = cycle term;
S. = seasonal term; and
It= irregular term.

On the other hand, the multiplicative model is given by

XI =~CISJI .
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(2)

The centerpiece of the process is the estimation of the seasonal component St. Once
this has been achieved a seasonally adjusted series {Xncan be produced using the formulas,

X; =XI - S, (for additive models)

and

X;' = ~I (for multiplicative models).
I

The techniques for estimating St, as contained in Technical Paper No. 15, provide the
use of moving average weights or filters to smoothen the series. The general approach
requires the detrending of the series first to center it about 0 (additive) or 1 (multiplicative)
and then averaged by month (all Januarys, all Februarys, and so on) to get the seasonal
deviation from the center. The process is repeated with moving averages (Henderson's) of
different widths and with down-weighting of selected observations based on the size of
irregular estimates. A rudimentary explanation on the major steps involved in the
decomposition process is given in Bersales and Sarte (2000).

It should be noted that the use of X-lIon a series will result to a reduced
deseasonalized series. The reduction is equivalent to approximately one year of data
concentrated at the beginning and end of the adjusted series. Thus, the ensuing variants,
specifically X-II ARIMA, .sought to address this problem brought about by the asymmetry in
the filtering process by incorporating one year of forecasts at the end of the original series
and one year of backcasts at the beginning of the original series. The X-II method is then
applied on the augmented series. Such an augmentation process seeks to improve
adjustments near the end of the series and obtain balanced seasonal projections and full
seasonal adjusted series.

The Philippine Experience

The X-II method and its most famous variant, the X-II ARIMA, is widely used by
government agencies and private businesses in many countries, including the Philippines.
The use of the procedure to adjust Philippine time series data was facilitated by a grant from
the Canadian government in 1992. The grant was funneled through the National Statistical
Coordination Board (NSCB) andmandated the implementation of seasonal adjustment on
important Philippine time series, particularly those used of policy analysis.
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Table 1. Original and Seasonally Adjusted GOP,
1988 - 1998
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The seasonal adjustment project called for the creation of a technical committee
consisting of agencies in the Philippine Statistical System (PSS) as member agencies. Under
the guidance of the technical committee, the Technical Working Group on Seasonal
Adjustment (TCrrWG-SAPTS) as created and was responsible for the implementation of the
project's mandate. The seasonal adjustment procedure used was Statistics Canada's X-II
ARIMA. To date the practice of seasonal adjustment for policy analysis has become a
common practice in government agencies responsible for the generation of economic data.

In this technical paper, we discuss some of the raging issues involved in seasonal
adjustment. We tackle the issue of optimality by using the signal extraction approach. Here
we devise a filtering process that will extract the seasonal component out in an optimal sense.
The filter is designed keeping in mind a multiplicative ARIMA process governing the series
of interest. Estimation of the ARIMA parameters is done through the application of an
approximate wavelet maximum likelihood estimation procedure.

The paper is constructed as follows. We discuss the fundamental issues involved in
seasonal adjustment in section 2. We next discuss the signal extraction procedure in section
3, following, largely the discussion of Burman (1980). Section 4 discusses rudimentary
concepts in wavelets and how wavelet coefficients are used in characterizing time series.
Finally, the suggested approach to seasonal adjustment is discussed in section 5.
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Usual Criticisms
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2. ISSUES IN SEASONAL ADJUSTMENT

The complication involved in seasonal adjustment procedures based on X-II can be
traced 0 the decomposition method given in (I) and (2). Mathematically, there exists an
infinite number of ways of implementing such decompositions and the use of moving
averages/linear filters to effect such decompositions is just one small sub-class of such
possibilities. In the presence of denumerable choices, it is best to apply statistical ideas in
order to identifyan optimal decomposition process.

The presence of so many competing methods of decomposition, no matter how
appealing they maybe, is naturally a source of large-scale confusion. Each has its unique
selling point and technical consideration. As Burman (1965) emphasized, none of these
methods can be shown to have optimal properties and are therefore considered ad hoc in
nature. This predicamentarises mainly from the contention that the time domain is incapable
of providing precise definition of what a decomposition method is.

On the use of X-II and its variants alone one can already identify a number of issues
to grope with. These include:

I. The method of decomposition(addition or multiplicative) to be used;
2. Handlingof extreme values and prior adjustments;
3. Treatment of Easter and trading day effects;
4. Treatment of missing observations(the variantsdon't allow data gaps);
5. Raking/benchmarking/streaml ining;
6. Determination of the lowest level of disaggregation;
7. Concurrent adjustment; and
8. Incorporating structural change in the original series.

Add to these the guidelines to be used in assessing the adequacy of the seasonal
adjustment applied. Even X-II ARIMA, which was developed to produce more 'accurate'
estimates of seasonally adjusted series when seasonality changes rapidly in a stochastic
manner can not be spared from these technicalities. For instance it has been noted (see
Bersales and Sarte, 2000) that X-II ARIMA can not cope with abrupt changes in the
structureof the time series.

Optimality

Notable attempts in the literature have been made to add the optimality dimension in
the decomposition process. Cleveland and Tiao (1976) for instance provided an additive
model with stochastic trend, seasonal and noise components to approximate the linear filter
version of the X-II decomposition process. Here, the parameters of the model are extracted
using least squares, and hence the incorporation of the optimalitydimension.

A more rigorous approach, which will be followed in his paper, was given by Burman
(1980). In this approach, called signal extraction, the decomposition process is treated in the
spectral/frequency domain framework. In this domain, the seasonal component of a time
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series is usually exhibited as spectrum peaks at the seasonal frequency and its multiples,
while the trend is represented by a broad peak at low frequencies: Thus, seasonal adjustment
under this framework can be defined as the operation of removing peaks while leaving the
rest of the spectrum undisturbed. This extraction procedure can be designed optimally
through the application of an appropriate filter. Filter design can be carried out using
nonparametric methods to avoid model misspecification. Hence, the use of wavelets in signal
extraction was conceived in this paper.

3. SIGNAL EXTRACTION FORMULATION

We begin the discussion of the extraction formulation by discussing filters. Here we
consider a signal X, in L\91) as the input of the filtering process.

What is a filter?

Consider a linear process {Yj} obtained from the signal {Xi} through the application
of a linear filter C = {Ct,k, t, k = 0, ±1, ±2, ..... }, i.e.,

<0

Y, = Z>/,kXk' t =0, ±I, ±2, .....
k=-<o

This linear system has the capability of attenuating some frequencies, e.g. noise, of X,
while passing others. In general, we are interested in time invariant filters ( Ct,t-k =hk), so that

<0

Y, = IhkXt- k
k=--<t>

=H * X.

In addition, we require that hj , j < 0 so that Y, is expressed in terms of X; sst.

Given a signal X, in L2( 91) and a causal, time-invariant linear filter (CTLF) H, the
filtered output Y, will have a spectral density given by

fy(w) =1 H(e-;W) 12 fx(w) (3)

=H(e-;W)H(eiW)fx (w)

where

fx(w) =_1_ Irx (J)e-;W; (spectral density ofXt);
21C ;=-<0

YxO) = autocovariance function of Xt; and
<0

H(e-iW) =Lh.e:" .
j=O

The function H(e-iW) is called the transfer function of the filter and the squared modulus

I H(e-iW)
1
2 is referred to as the power function of the filter.

In Fourier transform representation,

Yew) =_1_ Iy,e-iW/ ,
21C /=_<0
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=_1~~n.x.»:"
2 L..J L..J J t-:J
Jr (=-<0 j=O

= H(w)X(w).
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We call H(w) a low-pass filter if H(w) = 0 for Jr/2::;; W::;; Jr; a high-pass filter if it
satisfies H(w) =0 for - Jr ::;; W s Jr/ 2 ; and a band-pass filter if H(w) = 0 for Iwi::;; Jr/ 2 .

In terms of the backshift operator B,
00 •

H(B) =IhjBj
j=O

becomes the generator of Y, or the transfer function polynomial.

The use of filters will be taken in the context of ARIMA models. We assume that the
signal takes the multiplicative ARIMA form

<D(Bs)¢(B)(l-B)D(l-B)d XI =0(Bs)(}(B)a
l

(4)

where S is the seasonality of the series; at is white noise; D and d are the seasonal and non­
seasonal differencing parameters, respectively; <D(Bs) and ~(B) are the seasonal and non­
seasonal autoregressive polynomials, respectively; and 0(Bs) and 8(B) are the seasonal and
non-seasonal moving average polynomials, respectively. (4) can be expressed alternatively
as

X =H(B)a = B(B) a
I I rpM (B)CPs (B) 1

(5)

(6)

where tJfM(B) and tJfs(B) have no common factors and represent the trend-cycle and seasonal
components, respectively. Following (3), the spectrum of X, is given by

2

I, (w) =1 H(e- iW
) 12

O"a
2Jr

B(eiIV
) 0";

=
'1/M (e

i IV
)'l/s (e

iW
) 2Jr

Decomposition Using Filters

Following Burman (1980), we define the trend-cycle and seasonal components as
those responsible for the spectral peaks at the origin and at the seasonal frequencies,
respectively, and the irregular component covers the transient characteristics, i.e., white noise
or a low order MA process.

Now, let
(7)

where
M

1
=HM (B)bl (trend-cycle component);

SI =Hs(B)c1 (seasonal component);
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I, =HI (B)d, (irregular component)
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(10)

with HM, Hs and HI being the transfer functions of the components of X, and b., c., and d, are
independent white noise processes. With the spectrum of the components defined similarly
as in (6), XI'S spectrum can be expressedas

fx(w)=fM(W)+ fs(w) + fl(w). (8)

Assumingfor convenience that a~ =a; =a~ , (8) can be expressed as

gX(W)=gM(W)+gS(W)+g/(W) (9)

where gM, gs and gl are rational functions of x = cos w. This shows the decomposition of X,
via the spectrum, which obviously is not unique.

Minimum Signal Extraction Method

For implementation purposes we apply the result of Whittle (1963), who showed that
the best minimum square error (MSE) linear estimatorof a component M, given X, is

if = HM(B)HM(F) X
, H(B)H(F) I

where F is the forward operator.

Denote by p and q the degree of the polynomial in the denominator and numerator in
(5), respectively. Let EM and ES be the minimum of fMand fs, respectively and replace fs by
f~*=fs-Gs' fM by fM*=fM-GM' and f by f/=fl+GS+GM. Let

f~*=gs*(x)=Gs(B,F) where x=~(eill'+e-;II') is replaced by ~(B+F). Then the

minimum signal extraction filter for the seasonal component is

8
s

(B,F ) =gs *(x) = Gs(B,F) If!s (B)lf!s(F)If!M (B)If!M (F)
g x (x) If!s (B)1f!s (F) B(B)B(F)

Gs (B, F)1f!M(B)1f!M(F)
=

B(B)B(F)

Cs(B,F)
= B(B)B(F) (say)

where Cs(B,F) is a symmetric polynomial in Band F of degree p.
trend removal filter is given by

8M(B,F) =gM *(x)
gx(x)

CM(B,F) )= (say
B(B)B(F)

where CM(B,F) is also symmetric and of degree p.

Similarly, the minimum

(11 )
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In order to avoid convergence problems, (10) and (11) are expressed in the following
rational form:

C(B,F) = K(B) + K(F) (12)
fJ(BW(F) fJ(B) fJ(F)

where K(.) is a polynomial of degree r = max(p,q). K is then used to filter X, as
K(F)

XII =--X/ =HJ(F)X,.
fJ(F)

Define <1> *(B) = ¢(B)<1>(B
s).

Forecast X as
e(B s ) I

<1> *(B)X, =fJ(B)a" t =N+1, N+2, ... , N+q+r

where N is the length of the series.

We then construct an intermediate series
A, =K(F)X, , 15, t 5, N + q.

Now, <1> *(B)X1, = <1> *(B)H) (F)X,

= HI (F)<1> *(B)X,

=0, for t ~ N + q + 1.

From the above formulation we can define a system of p + q equations in XIt (t =
N+q-p+l, ... , N+2q) given by

fJ(F)X), =A"t=N+q-p+l, ... , N+q (13)

<1>* (B)X J, =0, t = N+q+l, ... , N+2q .

The remaining Xu can be found recursively from the relation in the first part of (13),
working backwards to t = 1. The mirror image of these steps is applied to the backcast of X,
to give X21• Finally, the filtered component is the sum of XIt and X21• The whole process is
applied with KM(.) for the trend and Ks(.) for the seasonal component, respectively. This
entire methodology is known as the Minimum Signal Extraction Method, otherwise known as
MSX.

4. WAVELETS

Definition and Some Concepts

A wavelet is defined as nay function Wet) in L2( m ) satisfying the admissibility
condition

""dw
f-;-I W(w) 1

2
< co

-""

(14)
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where Wdenotes the Fourier transform of W. It is usually expressed in the parametric form

(t -b)
Wo,(t) ~ W;¥; where a, b are in 91 (a,. 0) and are known as the dilation and translation

, Ial
parameters, respectively. The admissibility condition in (14) is required so that the wavelet

transform becomes invertible. It turns out that this is ensured whenever W(w) has sufficient

fast decay, i.e., W(~) ~ 0 as Iwl ~ 00 and
OJ

W(O) = IW(t)dt =0 .
-OJ

Wavelet Transforms

The continuous wavelet transform (CWT) of X, in L2(91) at the time-scale location
parameter (b,a) is defined by the inner product

< X,Wa,b >= IXIWa,b(t)dt.

The above transform satisfies the property

II< X'Wa.b >1
2
= II x, 1

2
dt.

Hence, CWT's completely characterize X, in the L2 sense. Moreover, X, maybe
reconstructed by the inverse transform given by

XI =C;;} JJa- 2 < X,Wa,b > Wa,hdadb
OJ

where C;I =2" II W(w) 1
2

I wi-I dw < 00. The admissibility condition JW(t)dt =0 is
-OJ

implied by C;I < 00 if W(t) has sufficient decay.

The discrete wavelet transform (DWT) of X(t) in L2(91) is the doubly-indexed
sequence {dj .k: j, k E Z} such that

dj,k =2 j/2 <X,W(2J(t-k/2J )) > .

Note that dj.k isjust the value of the CWT of X, at the time-scale location (k/2j
, l/2j

) or
at the time-frequency location (k/2J, c/2J) where c > 0 is a constant that depends on the choice
ofW(t).

If the time interval is normalized to the unit interval, the support of the wavelet
becomes [(n-I )2-(m-l), n2-(m-I)] so that the wavelet covers the entire time series. Hence, for a
scaling parameter m, the translation parameter has value n = I, 2, ... , 2m- I

. Thus, for a time
series of length N =2', the DWT (wavelet coefficients) consists of

{d m n : m E (1,2, .....,r), n(m) E (1,2,...... ,2"'-1)}.

Daubechies (1988) has shown that {dm.n} is a complete orthonormal basis of L2(91)

so that any X, in the said space can be represented as

/

/
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x, =I Idm,nWm.n(t)
m n(m)

where
dj,k =< X,Wm,n >

is the wavelet coefficient.

Filter Banks
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(15)

Since X, is only known on a discrete set of points, drn,n is calculated by a two-channel
filter bank. A two-channel filter bank representation of the wavelet transform consists of a
low-pass filter

2M-I
Z(t) =J2 IrkZ(2t - k)

k=O

where {rr} are non-zero filter coefficientsand a high-bandpass filter
2M-I

W(t)= ISkZ(2t-k)
k=O

where Sk =(_l)k r2M-1-k. The function Z(t) is referred to as a scaling function.

The low-pass filter coefficients {n} are moving average filters that smooths the high
frequency traits (jumps, cusps, singularities) of a series. On the other hand, the high­
bandpass filter coefficients {sj} act as a differencing operators that capture the details filtered
out by the low-pass filter.

Defining the dilations and translations of Z as
Z =2mI2Z(2 mt-n)

m,n

where m,n E Z, the fiIterbank definition of Wrn,n can be written as
2M-I

2ml2W(2 mt - n) =2ml2 ISkZ(2m-1 t - 2n - k).
k=O

Using the high-bandpass filter definition of Wrn,n it follows that
2M-I

d =2m12"'s <X W(2 m-
't-2n-k»m,n L=:J k ,

k=O
2M-I

=J2 ISkUm-I,2n+k '
k=O

where um,n =2m12 <X,W(2mt-n» is the scalingcoefficient.

(16)

Calculation of Urn,n can be performed by writing Zrn,n in terms of the low-pass filter as
2M-I

2ml2Z(2 mt - n) =2(m-I)/2 :~:>kZ(2m-1 t - 2n - k).
k=O

Convoluting X, with the above equation we find that Urn,n can be expressed as
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2M-I

U =2(m-I)/2 "r < X Z(2 m-1t - 2n - k) >
m,n L..J k ,

k=O
2M-I

=L rkU m-I,2n+k . •
k=O

(17)
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Thus, both Urn.n and drn,n are calculated recursively from the smallest to the largest
scale with the simple multiplication and addition operatorsof a two-channel filtered bank.

5. SUGGESTED APPROACH

Consider an additive model for XI such as the one given in (7) [If model is
multiplicative consider XI' = log X, MI' = log M, SI' = log S, and II' = log II']. Define gz(x),
gM(X), gs(x) and gl(x) in (9) as follows:

gz (x) = U(x) =Q(x) + R(x)
. VM(XW~(X) VM(x)Vs(x)

= Q(x) + RM(x) + Rs(x)
VM(x) Vs(x)

=g, (x) + gM (x) + gs(x)
where

V(x) =()(eiW)8(e-;W);

V
M

(x) = CfJM(eiW)CfJM (e- iW); and

Vs (x) =CfJs (eiW)CfJs (e- iW).

The deseasonalized series is obtained as the sum of XII and X21 where XII is obtained
from (13) using forecasts of XI, X21 using backcasts 9fXI and KsO is as defined in (12).. .

In deriving the ARIMA coefficients to be used in the filtering process, we employ an
approximate wavelet maximum likelihood estimator (AWMLE) as given in Jensen (2000).
Jensen introduced this type of estimators in estimating long and short memory parameters in
ARIMA models. The procedure extracts an approximate MLE by defining a likelihood
function based on the wavelet coefficients instead of the original observations {XI}' Jensen's
simulation experiments showed that the AWMLE fairs well in comparison to the usual
techniques of estimating short and long memory parameters in ARIMA models.

From (15), the covariance between wavelet coefficients of different dilations m ;f. m'
and translations n, n' E Z is given by

cov(dm,n,dm',n') =E(dm.ndm'.n')

= ffWm,n(t)rx(lt-sI)Wm',n,(s)dtds
-:-----,----

=2(m+m')/2 fix (w)e-i(2m n-2m'n')WW(2mw)W(2m'w)dw (18)

Usingan ideal high-bandpass wavelet W(t) with Fourier transform
~ {t, IwIE(JZ',2JZ')

W(w) =
0, ow
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I

\.

one can show that the expression in (18) is zero. This result allows us to define an
approximate log-likelihood function for dm,n based on the multivariate normal distribution.

Consequently, we have the following procedure for the estimation of the ARIMA
parameters which are needed in implementing the optimal seasonal adjustment procedure
discussed in section 3,

The procedure consists of the following steps:

1. Consider observations of X, for t = I, 2, ' .. , 2max.

2. Define UO,n = X(n) and compute dm,n and um,n recursively from (16) and (17),
respectively. This will generate observations dm= (dm,l, dm,2, ... , d m,2"",,-m)' , m =

1,2, ... , max.
3. Letting d = (d.', d2 ' , ••• , dmax' )' , it can be shown that d has a multivariate normal

distribution with mean vector zero and covariance matrix L = Diag(<JII], <J2h, ... ,
<Jmaxlmax) where 1mis a 2max-mx 2max-midentity matrix. Thus, the ARlMA parameters
IJ =(<I>,¢;E>,B) can be estimated through the maximization of the approximate log­
likelihoodfunction given by

Im~ d'd
L(IJ;w)=-- I2m~-mlogla-2am'I+,,~ m,

2 m=l a am

where a- = 1 ~ d~'dm • This function can be numerically maximized over the
2 m~ 1L..J" ,- m=1 a am

parameter space of J.l to yield the AWMLE.

The above procedure can be implemented empirically using R's Wavethresh or
Mathlab's Wavelab.

6. CONCLUDING REMARKS

It can be seen that the suggested approach in this paper consists of two major
procedures. The first procedure deals with the estimation of the ARIMA parameters in (4).
Once the parameters. have been estimated using the AWMLE procedure they are used in the
filtering procedure. This filtering procedure (MSX) consists of deriving 8s(B,F) in (10) and
applying it to X, This is carried out by applying (13) to the forecasts and backcasts of X,
using KsO defined in (12).
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